
Airborne instruments to measure atmospheric aerosol particles, clouds and
radiation: A cook's tour of mature and emerging technology

D. Baumgardner a,⁎, J.L. Brenguier b, A. Bucholtz c, H. Coe d, P. DeMott e, T.J. Garrett f, J.F. Gayet g,
M. Hermann h, A. Heymsfield i, A. Korolev j, M. Krämer k, A. Petzold l, W. Strapp m, P. Pilewskie n,
J. Taylor o, C. Twohy p, M. Wendisch q, W. Bachalo r, P. Chuang s

a Universidad Nacional Autonoma de Mexico, Centro de Ciencias de la Atmosfera, Ciudad Universitaria, Mexico City 04510, Mexico
b CNRM, France
c Naval Research Laboratory, Monterey, CA 93901, USA
d University of Manchester, Manchester, England, United Kingdom
e Colorado State University, Ft. Collins, CO, USA
f University of Utah, Department of Atmospheric Sciences, Salt Lake City, UT 84103, USA
g LaMP, Clermont Ferrand, France
h Leibniz Institute for Tropospheric Research, 04318 Leipzig, Germany
i National Center for Atmospheric Research, Boulder, CO 80301, USA
j Environment Canada, Toronto, Canada
k Forschungszentrum Jülich, Institut für Energie- und Klimaforschung Stratosphäre (IEK-7) 52425 Jülich, Germany
l DLR, Oberpfaffenhofen, Germany
m Environment Canada, Toronto, Canada
n University of Colorado, Boulder, CO, USA
o United Kingdom Meteorological Office, Exeter, England, United Kingdom
p Oregon State University, Corvallis, OR, 97128, USA
q Universität Leipzig, Leipziger Institut für Meteorologie (LIM), Stephanstr. 3. 04103 Leipzig, Germany
r Artium, CA, USA
s University of California Santa Cruz, CA, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 15 October 2010
Received in revised form 19 June 2011
Accepted 27 June 2011

An overview is presented of airborne systems for in situmeasurements of aerosol particles, clouds
and radiation that are currently in use on research aircraft around the world. Description of the
technology is at a level sufficient for introducing the basic principles of operation and an extensive
list of references for further reading is given. A number of newer instruments that implement
emerging technology are described and the review concludes with a description of some of the
most important measurement challenges that remain. This overview is a synthesis of material
from a reference book that is currently in preparation and thatwill be published in 2012 byWiley.

© 2011 Elsevier B.V. All rights reserved.

Keywords:
In situ airborne measurements
Instrumentation
Aerosol particles
Cloud microphysics
Solar radiation

Atmospheric Research 102 (2011) 10–29

⁎ Corresponding author.
E-mail addresses: darrel.baumgardner@gmail.com (D. Baumgardner), anthony.bucholtz@nrlmry.navy.mil (A. Bucholtz), Tim.Garrett@utah.edu (T.J. Garrett),

hermann@tropos.de (M. Hermann), heyms1@ucar.edu (A. Heymsfield), m.kraemer@fz-juelich.de (M. Krämer), twohy@coas.oregonstate.edu (C. Twohy),
m.wendisch@uni-leipzig.de (M. Wendisch).

0169-8095/$ – see front matter © 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.atmosres.2011.06.021

Contents lists available at ScienceDirect

Atmospheric Research

j ourna l homepage: www.e lsev ie r.com/ locate /atmos



Contents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2. Aerosol measurement techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1. Aerosol number concentrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2. Aerosol optical properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3. Chemical properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.1. Bulk aerosol collection and analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.2. Mass spectrometric methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.3. Single particle soot photometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.4. Cloud condensation and ice nuclei . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4. Emerging technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4.1. New approach for IN detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4.2. Measurement of particle morphology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3. Cloud measurement techniques. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.1. Number concentrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1.1. Single particle impaction techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.1.2. Single particle light scattering techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.1.3. Single particle imaging techniques. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2. Mass concentration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2.1. Heated element techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2.2. Inlet-based evaporating systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2.3. Other sensing techniques for LWC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3. Optical properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3.1. The cloud extinction probe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3.2. The polar nephelometer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3.3. Cloud integrating nephelometer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.4. Emerging technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.4.1. Phase Doppler interferometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.4.2. Holography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.4.3. Distinguishing Ice crystals from water droplets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4. Radiation measurement techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.1. Solar spectral radiometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.2. Actinic flux density measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.3. Stabilized radiometer platforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.4. Future outlook for radiometery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5. Measurement challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.1. Anisokinetic sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.2. Cloud particle breakup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

6. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Disclaimer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1. Introduction

The fact that global climate is modified as a result of the
complex interactions between solar radiation and atmospheric
particles is undisputed, but the magnitude and sign (warming
versus cooling) of the effects remain a major point of debate.
Numerous models have been developed that explore the
processes by which aerosol particles interact directly with
solar and terrestrial radiation and how some of these particles
subsequently form cloud droplets or ice crystals, further
enhancing such interactions. The results from these models
are often at oddswith one another, largely due to differences in
how the aerosol and cloud properties are represented in the
simulations, differences that are partially attributable to lack of
detailed measurements of these properties over a broad
enough range of conditions.

The use of satellites, whose measurement capabilities
continue to expand with respect to their sophistication,

resolution and coverage, has made a significant improvement
in the fidelity of the models as the model products can be
validated and data assimilated. The advances in satellite
technology and associated analysis algorithms have been
accompanied by validation programs that compare in situ
measurements with satellite products. These types of validation
studies are invaluable and many more are needed with even
more sophisticated airborne instruments on platforms that can
cover larger spatial ranges over many pixels of satellite
resolution.

Here we give a broad overview of the sensors that are
currently being used worldwide on research aircraft for
investigating basic atmospheric processes and acquiring infor-
mation that expands the data bases of aerosol, clouds and
radiation, sources of data that are essential for validatingmodel
products and satellite retrieval algorithms. Our objective is to
provide sufficient information on operating principles, limita-
tions and uncertainties at a level of detail that will provide
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graduate students, technical personnel and scientists with
enough information to make educated decisions about instru-
ment selection or data interpretation. A comprehensive list of
references is also provided for those wishing more detailed
information on particularmeasurement systems. This review is
extracted from a book on airborne atmospheric measurements
currently in preparation.

2. Aerosol measurement techniques

The development of airborne aerosol observations was
catalyzed by the development of improved optical methods
for cloud and aerosol particle sizing, like that of the Forward
Scattering Spectrometer Probes (FSSP). Additional advances
in airborne, aerosol measurements came with the develop-
ment of sensitive methods for measuring aerosol optical
properties, on-line aerosol chemical composition and the
cloud-forming potential of particles. The instrumentation can
be classified with respect to the aerosol characteristics they
are specifically designed to measure: 1) total number and
mass concentration, 2) size distributions, 3) optical proper-
ties and 4) chemical composition, where chemical composi-
tion includes the cloud-forming properties.

Instruments that can measure aerosol properties in ground
based applications can usually be adapted for operation inside
an aircraft. The challenge is to bring the particles from the
ambient air outside the aircraft to the instrument's sampling
chamber in the cabin without altering the aerosol properties.
This issue was the topic of an international workshop
(Wendisch et al., 2004) that addressed problems of inlet losses,
operation of instruments in pressurized aircraft and anisoki-
netic sampling, toname just a few.Anumber of lowparticle loss
inlets are now in use that have allowed technology, originally
designed for ground based measurements, to be implemented
inside the aircraft (e.g. Blomquist et al., 2001; Wilson et al.,
2004; Huebert et al., 2004).

Adapting a ground based instrument for operation outside
the aircraft, attached to the fuselage or wing, is more
challenging than installation in the cabin due to the many
environmental factors that affect the measurement, e.g.
extremes in temperature (−80 °C to +40 °C), pressure
(1000 mb to 50 mb), humidity (N100%), air velocities (50 to
250 ms−1), vibration, turbulence, air flow distortion, icing
and bird strikes, to name some of the factors that face the
instrument designer. The majority of the aerosol instruments
in use today are operated inside the aircraft cabin with the
exception of the optical spectrometers discussed below.

2.1. Aerosol number concentrations

The total number concentration of aerosol particles is
typically measured with Condensation Particle Counters
(CPCs) mounted in the cabin and sampling from an inlet. In
general, an airborne CPC operates very similar to standard
ground-based CPCs. In the continuous flow diffusion CPC,
which is the most frequently used today for airborne
operation (Wilson et al., 1983; Weigel et al., 2009) ambient
aerosol enters via an inlet and is then exposed to a
supersaturated vapor of a working fluid that condenses
rapidly on the particles that subsequently grow to sizes of
several micrometers before traversing a laser beam where

they scatter light that is detected by a photo diode. The
individual particles are counted and for a known flow rate the
aerosol number concentration can be calculated. Typically, a
CPC detects particles in the size range between a few
nanometers up to a few micrometers, the range of diameters
commonly encountered in the atmosphere. A comprehensive
review of the operating principles and the historical devel-
opment of CPCs in general are given by McMurry (2000).

The airborne, in situ instruments, the only ones that
mount on the exterior of the aircraft and that are presently
deployed to measure particle number concentrations as a
function of size, are the Passive Cavity Aerosol Spectrometer
Probe (PCASP), the Ultrahigh Sensitivity Aerosol Spectrome-
ter (UHSAS) and the Model 300 FSSP. The FSSP-300 and
PCASPmeasure in the size range from 0.3 to 20 μmand 0.12 to
10 μm, respectively and the UHSAS measure from 0.06 μm to
1.0 μm.

These instruments measure the intensity of light scattered
from individual particles that pass through a focused laser
beam. The collected light is proportional to the particle size
and is predicted theoretically when the shape and refractive
index of a particle is known, as well as the wavelength of the
incident light (Mie, 1908). The FSSP-300 is described in detail
by Baumgardner et al. (1992) and the PCASP is described by
Strapp et al. (1992) and Liu et al. (1992). There are two major
differences between the FSSP-300 and the other two
spectrometers. The FSSP-300 measures forward scattered
light (4–12°) and the PCASP and UHSAS collect side scattered
light (approximately 30–120°). The measurement by the
FSSP-300 is made in non-restricted flow whereas the PCASP
and UHSAS require an anisokinetic flow system that de-
celerates the flow before the measurement is made.

2.2. Aerosol optical properties

The light scattering and absorption coefficients are the
optical properties from which extinction, optical depth and
single scattering albedo are derived. Integrating nephelom-
etry is the technique (Beuttell and Brewer, 1949) based on
the geometrical integration of the angular distribution of the
light scattered by gas molecules and aerosol particles in an
enclosed volume. The incident light is provided by a near-
lambertian light source, generally an array of light-emitting
diodes (LEDs), flash lamp or quartz-halogen lamp, and
measured by a photomultiplier detector, placed at 90° with
respect to the lamp position to avoid stray light detection.
This technique has been implemented in a number of
commercially available instruments (Anderson and Ogren,
1998; Heintzenberg et al., 2006). An alternative approach is to
use a sensor that utilizes reciprocal nephelometry (Rahman et
al., 2006). A ‘reciprocal’ nephelometer is different from a
‘standard’ nephelometer in that the light source and detector
positions are reversed. In a standard nephelometer with a
broad-band incandescent light source, optical filters are used
to select scattered light in a wavelength band. With a
reciprocal nephelometer, the laser bandwidth is much
narrower and more precisely defined making the instrument
response easier to quantify. The reciprocal nephelometer has
been integrated in the Photoacoustic Absorption Spectrom-
eter (PAS, Arnott et al., 1999) discussed below.
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The instruments that determine the absorption coefficient
do so by measuring the attenuation of light transmitted
through an aerosol laden filter or, alternatively, by employing
a photoacoustic technique whereby the aerosol absorption is
related to the heating of the particles and the energy they
transfer to the surrounding air.

A limitation of the filter technique is that various
corrections are needed, among them a correction to account
for light scattering by the particles on the filter surface. The
multi-angle absorption photometer (MAAP) addresses this
problem by simultaneously measuring attenuation and light
scattering from the aerosols on the filter and then applies a
radiative transfer scheme for data interpretation which
includes the treatment of light scattering (Petzold and
Schönlinner, 2004; Petzold et al., 2005).

Photoacoustic spectrometers have much faster response
times than filter based instruments and are well suited for
airborne applications (Arnott et al., 1999; Moosmüller et al.,
2009). Particles contained in a cylindrical cavity are illumi-
nated by amplitude modulated laser radiation. Part of the
incoming intensity is scattered or transmitted and the
remaining fraction is absorbed either by the light absorbing
particles and/or by the surrounding gas. The absorbed
radiation generates heating and an increase in pressure that
is detected with a sensitive microphone. The relationship
between pressure and light absorption is established through
calibration.

2.3. Chemical properties

The composition of atmospheric aerosol has been mea-
sured from aircraft using a range of online methods. One
approach is to collect the aerosol and analyze it in real-time
onboard the aircraft. Another approach uses real-time, online
detection with mass spectrometric methods. The two most
commonly used methods are single particle detection and
ablation, based on laser methods, and thermal vaporization
techniques which largely provide information on particle
ensembles. Online aerosol composition measurements were
pioneered in the late 1990s (Murphy et al., 1998; Thomson et
al., 2000). In addition to the above methods for investigation,
some online instruments have been designed to measure a
single chemical component of atmospheric particles; most
notable of these is the single particle incandescence method
for refractory black carbon (rBC).

2.3.1. Bulk aerosol collection and analysis
One of the first measurements of this type was a chamber

in which a droplet mist is created by accelerating ambient air
with a nozzle through which ultra-pure water is aspirated
(Scheuer et al., 2003). The water with the sample is injected
into an ion chromatograph for analysis of dissolved ionic
species. This approach was used to study aerosol composition
during airborne studies across the Pacific region (Dibb et al.,
2002, 2003) and provided some of the first measurements of
vertical profiles of submicron particle component mass.

The Particle-Into-liquid Sampler (PILS), initially devel-
oped by Weber et al. (2001), and first used on an aircraft by
Orsini et al. (2003), uses droplets to dissolve aerosol
components and deliver them for analysis in real time;
however, the instrument differs from the mist chamber in

that the ambient, particle-laden flow from outside the aircraft
is mixed with a turbulent flow of steam held at 100 °C. The
cooling of the steam when mixed with ambient air causes a
large supersaturation in the sample flow and the ambient
particles will rapidly grow to super-micron sized solution
droplets that are inertially separated from the gas flow and
impacted onto a vertical quartz surface via a single jet nozzle
at the end of the sampler that focuses the droplets. A filtered
flow of deionized water removes the solution sample into a
liquid flow to a detection system like an ion chromatograph.

2.3.2. Mass spectrometric methods
Two main types of aerosol mass spectrometry have been

developed to date for aircraft applications. One approach uses
laser based methods to ablate and ionize the particles before
mass spectrometric detection. This method is able to sample
single particles with a wide range of compositions. The
second technique uses thermal volatilization of the particles.
This method performs a separate ionization process using
electron impact on the volatilized gaseousmaterial and hence
can deliver mass quantification; however, due to the
relatively low volatilization temperatures, the refractory
components cannot be detected.

As described in an excellent review by Murphy (2007) in
single particle mass spectrometers the particles are entrained
into a vacuum through an inlet, which also acts to focus the
particles through the laser detection region. Once in the
vacuum region, the particle size is detected by optical
methods, either by optical scattering using a continuous
laser or by aerodynamic sizing. These sizing systems are used
to trigger a laser pulse with sufficient energy to ablate the
particle and ionize the fragments that are then transmitted to
a mass spectrometer.

The first mass spectrometer to be flown on an aircraft
(Thomson et al., 2000) was the Particle Analysis by Laser
Mass Spectrometer (PALMS) instrument flown on the NASA
WB-57 aircraft. The instrument has been used to establish the
presence of meteoritic material in the upper troposphere and
lower stratosphere and to establish the presence of a large
fraction of organic particulate in the upper troposphere
(Murphy et al., 1998; Cziczo et al., 2001; Murphy et al., 2006;
Froyd et al., 2009).

A new design for single particle, laser ablation, aerosol
mass spectrometry uses a Z shaped mass spectrometer to
maximize themass resolution in as small a volume as possible
(Pratt et al., 2009b). This instrument has most recently been
coupled to a counter flow virtual impactor (CVI) to show that
biological particles are efficient ice nuclei (Pratt et al., 2009a).

The only instrument that has operated on aircraft
platforms using thermalmethods to volatilize particles before
subsequent mass spectrometric selection is the AMS, first
developed by Jayne et al. (2000) and described in detailed by
Canagaratna et al. (2007). An AMS fitted with time of flight
(TOF) mass spectrometers can deliver full mass spectral
information as a function of particle size while alternating
betweenmass spectrometric and TOFmodes as the sensitivity
of the former is a factor 50 larger than the latter. The first
airborne measurements using an AMS were made with a
quadrupole system during the ACE-ASIA study (Bahreini et
al., 2003). Most aircraft making AMS measurements now use
either the C-shaped TOFAMS (e.g. Morgan et al., 2009) or the
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high resolution AMS (e.g. DeCarlo et al., 2008), which
typically have sensitivities 30 and 10 times greater than the
quadrupole systems.

2.3.3. Single particle soot photometry
Previous measurements of black carbon (BC) from aircraft

have been made either by offline analysis of filters or by
deriving it from the particle light absorption measurements
described above. The former technique has poor time
resolution and the latter is dependent on a highly variable
relationship between BC mass and absorption. An online
approach to the measurement of refractory BC (rBC) mass
and its size distribution, the single particle soot photometer
(SP2, Stephens et al., 2003) was first deployed on aircraft for
investigating the BC component of aerosols in the Arctic
lower stratospheric, using the NASA DC-8 (Baumgardner et
al., 2004).

As described by Schwarz et al. (2006) the SP2 uses light
scattering to size particles within the laser cavity of a Nd:YAG
laser (1064 nm) while particles that absorb light at the
wavelength of the laser, e.g., those that contain rBC, are
rapidly heated to incandescence. The black body radiation
emitted by the incandescence is proportional to the mass of
rBC within the particle. The mass is derived from the
amplitude of the incandescence signal by a calibration using
rBC particles of a known size. Aircraft studies using the SP2
have been undertaken to investigate the abundance and
source of rBC in the Arctic upper troposphere and lower
stratosphere (Hendricks et al., 2004), investigate the evolu-
tion of urban plumes (Moteki et al., 2007) and provide
measurements of the vertical distribution of rBC in global
models (Schwarz et al., 2006).

2.3.4. Cloud condensation and ice nuclei
Airborne measurements of cloud condensation nuclei

(CCN) are made with static thermal gradient diffusion
chambers (i.e., Squires and Twomey, 1966; Twomey and
Wojciechowski, 1969) or continuous flow techniques (Sinner-
walla and Alofs, 1973; Hudson and Squires, 1976; Fukuta and
Saxena, 1979). Both techniques create a controlled, supersat-
urated (S) environment in which CCN will grow. Static
chambers use batch processing of the light scattering signal
from the activated (growing by condensation) droplets (e.g.,
Lala and Juisto, 1977; Snider and Brenguier, 2000) or from
counting droplets in photographs (e.g., Delene et al., 1998). The
static chamber of Snider et al. (2003) has been optimized for
airborne measurements and can obtain a four-point spectrum
of concentration versus S in 140 s.

The continuous flow technique was developed to achieve
higher temporal resolution for aircraft (Sinnerwalla and Alofs,
1973; Hudson and Squires, 1976; Fukuta and Saxena, 1979).
Hudson (1989) extended the continuous-flow technique to
develop a CCN spectrometer with an S range from 0.01 to 1%.
Roberts and Nenes (2005) exploited differences in mass and
heat diffusion with a cylindrical, continuous-flow, thermal-
gradient CCN instrument that generates a constant S along
the streamwise axis. CCN spectra in this device can be
obtained in airborne applications by changing the flow rate
(Moore and Nenes, 2009). A thorough review and assessment
of the performance of various CCN instruments is discussed in
greater detail by Nenes et al. (2001) and Rose et al. (2008).

Direct measurements at S below 0.1% remain a challenge as
most CCN instruments are limited to larger S due to short
growth times.

The techniques that are employed on aircraft to measure
ice nuclei (IN) are 1) cloud chambers, 2) mixing devices, 3)
continuous flow diffusion chambers, 4) contact freezing
methods or 5) the capturing of particles for offline analyses
or processing (DeMott, in press). The technique most
frequently used in modern application is the continuous
flow diffusion chamber (CFDC) that is designed to allow cloud
and ice formation under controlled temperature and humid-
ity conditions during continuous sampling. Ice and water
supersaturations are created within the space between two
ice-coated walls held at different temperatures (e.g., Rogers,
1988; Rogers et al., 2001; Super, in press). Continuous flow
allows continuous and near real-time measurements of a
wide dynamic range of IN number concentrations, as well as
ease of interfacing with methods for collecting activated IN
for chemical analyses via electron microscopy (e.g., Kreiden-
weis et al., 1998) or single particle mass spectrometry (Cziczo
et al., 2003). Designs differ only in the applied geometry/
orientation and the means for detecting ice formation. The
actual detection of activated IN is performed using systems to
detect the growth of activated ice crystals that are larger than
droplets or to detect the ice phase via scattering or
depolarization properties.

2.4. Emerging technology

2.4.1. New approach for IN detection
A new device using mixing to generate controlled S at

supercooled temperatures for IN activation has been de-
scribed by Bundke et al. (2008). In the Fast Ice Nucleus
CHamber (FINCH) the supersaturation is produced from the
turbulent mixing of cold dry air with warm humidified air in a
closed loop system. Ice particles grown to sizes above 4 μm
during about 10 s residence time are discriminated from
droplets by their individual circular depolarization properties
and counted in an optical detector. The biological fraction is
also measured in an additional fluorescence channel (Bundke
et al., 2010). Potential advantages of this instrument are: a) a
high sample flow (up to 10 LPM) for improved counting
statistics at low IN concentrations; b) demonstrated use of
activemonitoring of RH and T in the ice activation region; and
c) capability for rapid variation of S and T through varying the
flow rates of the different particle-free gas-flows. Possible
limitations relate to the complex depolarization and frost
point measurements that require careful adjustment.

2.4.2. Measurement of particle morphology
Another, newly developed instrument, the Aerosol Parti-

cle Spectrometer with Depolarization (APSD), measures light
scattered at two angles from individual particles and the
extent to which those particles rotate the incident plane of
polarization as they pass through a focused laser beam. The
light scattered by individual particles is collected by a Mangin
mirror pair positioned at 90° to the laser and over a ±54°
cone, excluding an aperture in the center of the mirrors of ±
20°. Two additional optical systems located off-axis at 20° to
either side of the laser beam and collect a ±13° solid angle of
light. A polarized filter, rotated 90° to the plane of
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polarization of the incident laser, is mounted in front of one of
the backscattering detectors. The side detector is used to
determine the particle size using Mie theory to convert from
light scattering intensity, and comparison of the signals from
the two back detectors is used to determine the roughness, or
deviation from sphericity. This approach is used for two
reasons: 1) spherical particles will cause very little rotation of
the polarization angle of scattered light from its incident
direction, and 2) the intensity of depolarization depends on
the asphericity of the particle and the collection angle, with
angles from 140° to 170° showing the largest depolarization
ratios from a given size and shape. The signals from the three
detectors provide an asphericity index whose value is
distinctly different for different types of dust. When flown
on an aircraft with a CVI, as with the SP2, the APSD can
measure particles in cloud-free air and in the residuals of
cloud particles when sampling air from the CVI. Comparison
of the signatures of cloud particle residuals to the cloud-free
particles will assist in identifying not only the source of cloud
nuclei but also the fraction of aerosol particles, by particle
type, that is being removed by cloud processes. This addresses
a fundamental question concerning the characteristics of
cloud particle nuclei, particularly those that are ice crystal
nuclei.

3. Cloud measurement techniques

Our understanding of cloud processes has advanced
significantly since the early days of airborne research. With
the introduction of electro-optic spectrometers (Knollenberg,
1970, 1976, 1981) the modern age of airborne cloud in situ
measurements was truly launched. As will be discussed in
greater detail below, the majority of the techniques most
frequently used to date for measuring the properties of cloud
particles originated from the work of Knollenberg. The
remainder of this section describes the parameters to be
measured and the techniques that are currently employed to
make these measurements.

The concentration of water droplets can range from
b50 cm−3 in clouds over the remote ocean to N3000 cm−3

in highly polluted areas or in the plumes of forest fires. Their
sizes can be less than 0.1 μm (haze particles) growing to
larger than 6 mm through the processes of condensation,
collision and coalescence. The concentration of ice crystals in
glaciated clouds may range from several per cubic meter to
tens per cubic centimeter. In mixed phased clouds the
microphysical processes are more complicated and there
may be hundreds of water droplets per cubic centimeter
mixed with ice crystals at lower concentrations. In general,
mixed phase or completely glaciated clouds will have a
bewildering mixture of shapes, sizes and concentrations that
challenge the measurement systems.

For complete characterization of the cloud properties and
to understand their impact on the environment, we must
measure the optical and geometric cross sectional (projected)
area, the phase function, the shape, the density, the fall
velocity and the number per volume of each hydrometeor
size category. For ensembles of cloud particles we need to
measure the liquid/ice water content and the extinction
coefficient. The instruments that are currently deployed on
modern aircraft, however, can only directly measure the size,

shape, optical properties and mass of the cloud particles. The
density and fall velocity have to be indirectly derived from the
directly measured properties.

3.1. Number concentrations

All of the instruments that are currently used to measure
the size and shape of individual cloud particles from aircraft
use optical detection. Some, like the VIPS and Cloudscope (see
below), record the image of the hydrometeors after they have
impacted an exposed surface whereas the others record the
image or the light scattered by the particles. Fig. 1 shows the
size ranges of the 15 types of single particle spectrometers
that are described in the following sections.

3.1.1. Single particle impaction techniques
Impactor type probes are especially useful for comple-

menting the electro-optical probes with information about
ice crystals with sizes smaller than about 100 μm. The
particularly desirable feature of impactor probes is that they
havemuch larger sample areas than the scattering probes and
also than the optical array probes for sizes smaller than
50 μm. They also have potentially better resolution for
discerning particle habit and the ice particle cross-sectional
areas can be measured directly.

A Video Ice Particle Sampler (VIPS), developed at NCAR, is
used to obtain images of particles larger than about 5 μm
(Heymsfield and McFarquhar, 1996; Schmitt and Heymsfield,
2009) by collecting particles in silicone oil on an 8 mm wide
film, and then imaging them with video microscopes at two
different magnifications. The VIPS captures ice crystals that
impact a transparent moving belt that is exposed to the
airstreamand records their imagewith a videomicroscope. The
usable sample volume of the VIPS is approximately 0.8 l s−1 at
an aircraft true airspeed of 160 m s−1. Particle collection
efficiency is reduced for particles smaller than 10 μm, although
calculations show that the collection efficiency is 94% or greater
for larger particles (Ranz and Wong, 1952).

The Cloudsccope, developed at the Desert Research
Institute (Arnott et al., 1994, 1995; Hallett et al., 1998)
detects particles between five and a few hundred microme-
ters. It is an optical microscope with a CCD video camera
attached. In aircraft operation a sapphire window facing the
airstream is at a stagnation point of the flow so adiabatic
compression heats the window to sublimate the ice crystals.
From the rate of sublimation of the ice particles, their masses
can be estimated. Images are digitized and analyzed to
determine particle sizes, shapes and concentrations. The
sample volume of the Cloudscope is about the same as the
VIPS.

3.1.2. Single particle light scattering techniques
The airborne, in situ instruments that use optical sensing

tomeasure size distributions of cloud droplets and ice crystals
in the small particle range, i.e. b50 μm, are the Model 100
Forward Scattering Spectrometer Probe (FSSP-100), Cloud
Droplet Probe (CDP), Cloud and Aerosol Spectrometer (CAS),
Cloud and Aerosol Spectrometer with Depolarization (CAS-
DPOL), and Small Ice Detector (SID1 and SID2). All of them are
based on the scattering of light by single particles in a focused
laser beam. Table 1 lists some of the information about
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measurement characteristics of the different instruments
currently in service.

The operating principle of the FSSP, CDP, CAS, CAS-DPOL
and SID is based on the concept that the intensity of scattered
light is proportional to the particle size that can be predicted
theoretically if the shape and refractive index of a particle is
known, as well as the wavelength of the incident light. The
important thing to note is that the intensity of light scattered
by a particle varies according to the angle with respect to the
incident light. This theory, known by its originator, GustafMie
(1908) is applied in optical particle counters (OPCs) by
collecting scattered light from particles that pass through a
focused light beam of controlled intensity and wavelength
and converting the photons to an electrical signal whose
amplitude can be subsequently related back to the size of the
particle.

The FSSP, CAS, CDP and SID (models 1 and 2) differ
primarily in their optical configurations with respect to the
angles from which the scattered light is collected. The FSSP,
CDP, CPSD, CAS, CAS-DPOL and SID collect near-forward
scattered light. The CAS, CAS-DPOL and CPSD also implement
an additional optical system to collect near backscattered
light. The near forward angles are used because the largest
percentage of light scattered from a particle whose diameter
is larger than the incident wavelength is in the forward
direction. The backscattering signal is used for particle shape
discrimination as will be described under the section on
emerging technologies.

A laser provides the source of monochromatic light, lenses
focus the beam through which particles pass and the light

that they scatter is collected and directed to a photodetector.
The resulting electrical signal is digitized and processed in a
number of ways. More detailed information on the basic
operating principals of the instruments can be found in
Knollenberg (1981), Baumgardner (1983) and Baumgardner
et al. (2001, 2002).

The shapes of ice crystals cannot be determined with the
FSSP and CDP from a single collection angle and aspherical ice
crystals will usually be undersized, depending on the
deviation from spherical shape (Borrmann et al., 2000). The
CAS was designed with two collection angles in order to
discriminate water from ice based upon deviation from
sphericity. As described in Baumgardner et al. (2005)
comparison of light scattered in the forward and backward
directions provides an indication, at selected sizes, of the
sphericity of a particle. The CAS-DPOL has an additional back
detector with a polarized filter to measure the degree of
rotation of the polarized incident light caused by aspherical
particles (see Section 3.4.3).

The SID was specifically designed to discriminate ice from
liquid based on the pattern of light scattering (Hirst et al.,
2001; Cotton et al., 2009). There are several versions of the
SID, but only the SID-2 is described here. The SID-2 is able to
count and size spherical cloud particles 2 to approximately
140 μm. The scattered light in the SID-2 is detected by a
custommanufactured, hybrid photo-diode (HPD). The HPD is
a segmented silicon photodiode that contains 27 indepen-
dently sensed photodiode elements, with 3 central and 24
outer ones arranged azimuthally covering a forward scatte-
ring angle of 9–20°. The forward scattering pattern, derived

Fig. 1. This graph shows the approximate size ranges for the single particle sizing instruments that are currently used for airborne research. The * denotes an
instrument whose upper size range can be extended, either by changing the resolution of the instrument (changing its minimum threshold as well) or by using
some software analysis techniques to estimate sizes outside the nominal range. Instruments highlighted in red are considered emerging technology.
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from these 27 detectors, is distinctly different for aspherical
particles than for spherical water droplets, and can be used to
produce a generalized classification of the ice crystal
population (Cotton et al., 2009).

3.1.3. Single particle imaging techniques
An alternative to single particle scattering for determining

the size of a particle is to capture its image. This has the
advantage of extracting information about its shape as well as
its size. All of the instruments currently in operation use
optical arrays to capture the image; hence, their general
classification as “optical array probes” or OAPs. The ones that
will be described below are the two dimensional cloud and
precipitation probes (2D-C and 2D-P), the cloud imaging
probe (CIP), the precipitation imaging probe (PIP), the cloud
particle imager (CPI), the two dimensional stereo probe (2D-
S) and the high volume precipitation spectrometer (HVPS).

An important property of the imaging technique is its
insensitivity to a particle's composition. This is a significant
advantage over the light scattering methods, where shape,
orientation and refractive index of a particle play an essential
role in the determination of its size. The basic OAP is in fact a
microscope with a long working distance. There are two

methods used for the image recording. The first is imple-
mented by scanning a linear photodiode array and the second
provides instant particle imaging with the help of a two
dimensional photodetector array. In the first case the
photodiode array is scanned at the rate proportional to the
particle velocity such that each time the probe moves a
distance equal to one size resolution of the array, the
illumination state of all the elements is recorded. The
sequence of individual image slices forms a digital image of
the entire particle. The scanning rate of the photodiode array
depends on the air speed and pixel resolution and varies from
0.5 MHz to 20 MHz. The advantage of the optical array
method is that it allows for a continuous recording of a
sequence of particles passing through the sample area;
however, it is sensitive to the adjustment of the scanning
rate and may result in the distortion of the aspect ratio of the
image. The OAPs that use the linear array technique are the
2D-C and 2D-P (Knollenberg, 1970, 1981), the CIP, PIP and
CIP-GS (Baumgardner et al., 2001), the HVPS (Lawson and
Cormack, 1995) and 2D-S (Lawson et al., 2006).

Table 1 summarizes the features of each of these in-
struments. With the exception of the CIP-GS, all of these OAPs
are monoscale in that they use a single threshold level of 50%
to identify a valid image of a particle. This means that the light
levels on each of the diode elements is monitored and when
any one of these levels decreases below a fixed threshold
(typically 50%), the state of all of the elements in the array are
recorded. The CIP-GS is a grayscale probe whose light level
thresholds are programmable and as many as 256 levels can
be used; however, the instrument is typically operated with
three levels: 25%, 50% and 75%. The advantage of the grayscale
is that it gives additional details on the features of ice crystals
and, perhaps of more importance, better defines the depth of
field and allows clearer identification of particles in and out of
focus. The 2D-S is different from the other OAPs only that it
has two sets of orthogonal linear arrays, with 128 elements
each, so that it has somewhat larger sample volume.

The second method for image recording utilizes a square
photodetector array. An entire image is recorded at once
when the particle is passing through the sample volume. This
method requires a pulse illumination and triggering system for
identification of the presence of the particle in the sample
volume. The CPI is the only instrument currently in airborne
operation that uses this technique, although the holographic
imaging system,HOLODEC, described in emerging technologies,
is similar. The CPI requires pulse illumination and therefore
results in discontinuous measurements of the sequence
of particles; however, the images measured by these photode-
tector matrices are insensitive to the airspeed as long as the
duration of the pulsed illumination is short enough.

3.2. Mass concentration

In the previous sections we discussed methods for
measuring cloud particle properties on a particle by particle
basis. In addition to the properties of individual droplets and
crystals, we need tomeasure integral properties like liquid/ice
water content, phase function and optical extinction. These
properties can be derived from the size distributions mea-
suredwith the single particle techniques; however, unless the
clouds are all water, the wide variety of crystal shapes and

Table 1
Specifications for cloud probes (ordered by year put in operation).

Instrument Vender Measurement
technique

Measurement
range (μm)

Sample volume
at 100 ms−1

(liters/seconds)

2D-C PMSa Optical:
imaging

25–800 μm 5

FSSP PMSa Optical:
scattering

2–50 μm 0.037

260-X PMSa Optical:
imaging

10–620 μm 2

CPI SPEC
Inc

Optical:
imaging

N3 μm 0.37

CAS DMT Optical:
scattering

0.5–50 μm 0.025

CIP DMT Optical:
imaging

25–1550 μm 16

VIPS N.A.b Impaction N5 μm 0.5
Cloudscope N.A.b Impaction N5 μm 0.5
SID-2 N.A. Optical:

scattering
2–140 μm 0.088

CDP DMT Optical:
scattering

2–50 μm 0.025

2D-S SPEC
Inc.

Optical:
imaging

10–1260 μm 16

CIP-GS DMT Optical:
imaging

15–900 μm 10

PDI Artium Optical:
scattering

1–1000 μm 0.025

PIP DMT Optical:
imaging

100–6000 μm 166

CAS-DPOL DMT Optical:
scattering

0.5–50 μm 0.025

HVPS-3 SPEC
Inc.

Optical:
imaging

100–
12,000 μm

119

HOLODEC N.A.b Optical:
holography

15–2000 μm Variable

CPSD DMT Optical:
scattering

0.5–50 um 0.025

a Now supported by Droplet Measurement Technologies (DMT).
b Not commercially available.

17D. Baumgardner et al. / Atmospheric Research 102 (2011) 10–29



effective densities will lead to large uncertainties that can be
avoidedby using techniques that directlymeasure the integral
properties.

Early measurements of cloud LWC and total condensed
water content (TWC) were accomplished by collecting rime
ice on rotating cylinders (Stallabrass, 1978) and, in fact, such
measurements still provide the basis for important engi-
neering standards such as the certification of aircraft for
flight into icing conditions. Since then, various instrument
techniques have been developed to continuously measure or
infer LWC and TWC: hot-wire melting and evaporating
devices, inlet-based evaporators, optical devices, and even
riming devices.

3.2.1. Heated element techniques
In the early 1950s the first commercial instrument was

developed to measure cloud LWC using a heated wire (hot-
wire) exposed to cloud (Neel, 1955) providing a continuous
record of the structure of LWC. The device operated on the
principle that the LWC could be deduced from the amount of
power delivered to the wire to evaporate cloud droplets.
Since then a variety of other heated-surface sensors have
been developed (Merceret and Schricker, 1975; King et al.,
1978; Nevzorov, 1980; Lilie et al., 2004; Vidaurre and Hallett,
2009). The basic measurement by these instruments, the
amount of power delivered to a surface to keep it at a
constant temperature in cloud, results from convective heat
loss to the airstream and the evaporation of water droplets:

Pt = Pdry + PLWC ð3:1Þ

where Pt is the total power measured across the surface, Pdry is
thedry-air convectiveheat loss from the surface, andPLWC is the
power expended to evaporate droplets. The convective heat
loss (Pdry) for a particular geometry can be expressed as a
function of dimensionless variables and be parameterized from
calibration flights in cloud-free air. The cloud LWC is then:

WL = Pt−Pdry
! "

= Le + Te−Tað Þð ÞVAεð Þ ð3:2Þ

where Le is the latent heat of evaporation, Te is the evaporative
temperature of water, Ta is the air temperature, V is the air
velocity, A is the sensor cross-sectional area, and ε is the overall
collection efficiency of the sensor for droplets.

Several hot-wire devices incorporate a reference heated
surface not exposed to direct impact with water droplets to
improve the estimation of the dry-air convective heat losses.
The overall baseline uncertainty due to the removal of the dry
term is typically of the order of 0.03 gm−3 (King et al., 1978)
which varies according to flight maneuvers, and can be
improved somewhat using the reference. With careful
analysis and manual baseline zeroing, the sensitivity of
some devices can be as low as several mg m−3 for specific
situations (Korolev et al., 1998). The different types of heated
surface systems vary primarily in the type and geometries of
the heated surfaces which affect their capture efficiencies for
water droplets and ice particles.

The accuracy of hot-wire LWC estimates has been
established by comparison to reference measurements
provided by icing cylinder or blade rime ice measurements
in wet wind tunnels (Stallabrass, 1978; Ide and Oldenburg,

2001). At a commonly used droplet test median volume
diameter (MVD) of 20 μm, hot-wires have been found to
agree with such reference methods to within about 15% (King
et al., 1985; Strapp et al., 2002), indicating that the hot-wire
accuracy approaches the estimated accuracy of the reference
method; however, the fraction of the LWC measured by
cylindrical wires has been found to decrease with increasing
median volume diameter (Biter et al., 1987; Strapp et al.,
2002), dropping to as low as 50% whenMVD are 200 μm. This
response roll-off with droplet MVD has been attributed to
droplet splashing and re-entrainment of water after impact
with the wire. Hot-wires of different geometries have been
found to have varying degrees of roll-off with MVD. These
differences have been exploited in a recent hot-wire device
that incorporates three impact wires and a reference wire to
estimate both LWC and droplet MVD (Lilie et al., 2004). Such
a method for MVD estimation relies on an empirical
calibration of the device in a wind tunnel and the accuracy
of the tunnel MVD estimate itself. The sensitivity to the
droplet distribution has not been determined.

Wire geometries with specially designed capture volumes
are also used to estimate TWC inmixed-phase conditions.With
an independent measurement of LWC, the ice water content
(IWC) can also be estimated. King and Turvery (1986)
proposed a wire-wound, cup-like, TWC device rather than a
cylindrical wire, operating as an ice-particle melting device
where IWC could be calculated in a similar manner to a LWC
device. In the mid 1990s, the Russian Nevzorov LWC/TWC
device was introduced into western airborne measurements
(Nevzorov, 1980; Korolev et al., 1998). Several newer hot
element IWC devices have since been developed based on
similar principles (Lilie et al., 2004; Vidaurre and Hallett,
2009). In the Nevzorov hot-wires a cylindrical ‘LWC’ hot-wire
and a non-cylindrical wound-wire ‘TWC’ collector with a
conical capture volume pointed into the airflow are each
attached to the leading edge of a flow-correcting vane.

Conceptually, ice particles are assumed to impact and
bounce off the surface of the cylindrical LWC wire, resulting
in very little heat loss, while liquid droplets spread out into a
film, and quickly evaporate resulting in a relatively large heat
loss. The TWC collector is assumed to capture both ice particles
and water droplets efficiently and the heat loss to the wire is a
result of both the liquid and ice particle mass of the cloud.

While non-cylindrical TWC sensors have been found to
measure most of the typical cloud LWC (Ide, 1999; Strapp et
al., 2002; Lilie et al., 2004), significant fractions of ice particles
have been shown in high-speed videos to be ejected from the
capture volume (Emery et al., 2004; Strapp et al., 2005;
Korolev et al., 2008). Determining the absolute IWC efficien-
cies of hot-wire sensors has been impeded by the lack of a
suitable reference standard for ice particle testing. Although
facilities now exist with a reference IWC estimate (e.g. Strapp
et al., 2008), ice particles in these facilities are produced by
shaving ice blocks or similar methods, and complementary
aircraft-based testing is required in natural ice crystals (Isaac
et al., 2006; Korolev et al., 2008).

3.2.2. Inlet-based evaporating systems
For all instruments in this class hydrometeors enter an

inlet exposed directly to the air stream. The inlet acts as a
deep capture volume so that the bouncing and re-
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entrainment observed in hot-wire devices (Emery et al.,
2004; Strapp et al.,2005; Korolev et al., 2008) is minimized,
providing a measurement advantage for large water drops
(Twohy et al., 2003) and large ice particles. TWC is deduced
from enhanced humidity due to hydrometeor evaporation,
measured usually by an absorption hygrometer such as a
Lyman-alpha or tunable diode laser. Ruskin (1965) describes
an isokinetic flow-through device with a 1 cm inlet, in which
captured hydrometeors would melt and evaporate due to
warming by heating elements and impact with fine screens.
Similar devices are described by Kyle (1975) and Nicholls et
al. (1990), where the former was used for measurements of
heavy rain in convective clouds, and the latter primarily for
measurements in ice clouds.

More recently the Fast In Situ Stratospheric Hygrometer
(FISH) was developed based on the Lyman-α photo-fragment
fluorescence technique (Zöger et al., 1999; Schiller et al.,
2008). The FISH is sensitive to H2O mixing ratios from
approximately 0.5 to 1000 ppmv and thus well suited for
investigations in the upper troposphere and lower strato-
sphere over a large dynamic range. The time resolution is 1 s,
determined by the exchange time of air through the
measurement cell. The air enters by a forward facing inlet
tube mounted outside of the research aircraft sampling total
water, i.e., the sum of both gas-phase molecules and ice
particles. The large ice particles are sampled with enhanced
efficiency compared to the gas molecules (Schiller et al.,
2008). The aspiration coefficient (or enhancement factor) of
the inlet increases from approximately unity for particles
with radii smaller than 0.3 μm to its maximum value Emax

which is typically achieved for particle radii larger than 3–
4 μm. The value of Emax depends on the air density,
temperature and velocity and can vary between 3 and 10.

Weinstock et al. (2006) describe the Harvard Total Water
(HTW) isokinetic evaporator specifically designed and cali-
brated for low-IWC cirrus measurements as small as several
milligrams per cubic meter. Another instrument is the Closed
Path TDL Hygrometer (CLH), a sub-isokinetic sampler that
concentrates hydrometeor mass relative to free-streamwater
vapor mass, thereby enhancing its ability to measure
condensed water contents b10 mg m−3 (Davis et al., 2007).
As with the FISH, particles are not sampled isokinetically so
that adjustments must be made to account for particle
collection efficiency as a function of size.

The Counterflow Virtual Impactor (CVI), developed to
measure evaporated hydrometeor residuals, has also been
used to measure TWC (Noone et al., 1988, 1993; Twohy et al.,
1997). Hydrometeors of sufficient size enter the inlet against
a counterflow of pressurized, initially dry, carrier gas air and
travel into an evaporation chamber. The humidity subse-
quently measured is solely due to hydrometeor evaporation
and independent of the free-stream humidity. The CVI has a
detection limit as low as 1 mg m−3, but suffers from
hysteresis at relatively high water contents. Due to the
counterflow, CVI instruments typically have a ‘cut-size’ of the
order of 4–8 μm below which particles are not detected.

There still remains the need for an instrument that can
measure total water contents higher than 5 gm−3, levels of
water that can be found in deep convection. All of the
instruments described above saturate when LWC or IWC is
larger than this value.

3.2.3. Other sensing techniques for LWC
Another instrument that uses phase change to determine

hydrometeor mass is the Rosemount icing rate sensor that is
sensitive only to supercooled water droplets. The measure-
ment technique is based on changes in the natural frequency
of an oscillating cylinder due to accretion of ice on its surface.
The cylinder is vibrated using magnetostrictional excitation
that causes axial oscillations of the cylinder at a natural
frequency of 40 kHz. As supercooled water droplets impact
the cylinder they freeze and their added mass decreases the
resonance frequency, a change that is proportional to the
mass and, through calibration, is converted to LWC. More
details may be found in Baumgardner and Rodi (1989),
Heymsfield and Miloshevich (1989), Cober et al. (2001a,b),
and Mazin et al. (2001).

The Particulate Volume Monitor (PVM-100A) is closely
related to the class of instruments termed “laser-diffraction
particle-sizing instruments” (Azzopardi, 1979; Hirleman et al.,
1984). In the PVM (Gerber, 1991) a collimated laser irradiates
ensembles of particles which scatter light onto a narrow
circular region of a sensor. Each sector of the sensor
corresponds to different scattering angles. The PVM has a
large-area photo diode in front of which is placed a fixed
spatial filter with varying transmissions in the radial direction
that transform the scattered light into an integrated particle
volume concentration, Cv(volume of the particles per volume
of the suspending medium). The PVM has been used primarily
to measure Cv in warm water clouds where Cv=LWCρ−1

(ρ=water density). The PVM has a second channel that
converts the scattered light into the integrated particle surface
area (PSA) of drops using a different set of spatial filters. The
ratio of LWC/PSA is proportional to the effective radius of the
droplet size distribution (see Section 3.3).

The PVMModel 100A, because of its fast response time, at
1000 hz sampling rates can resolve LWC with structure at
10 cm scales at an aircraft speed of 100 m s−1. The LWC
channel of the PVM-100A has an accuracy of ~10% over a
droplet size range of about 4 μm to 30 μmdiameter, while the
PSA channel measures with similar accuracy to about 70 μm.
The principal weakness of the aircraft PVM-100A is the
limited response as a function of droplet size (Wendisch,
1998; Wendisch et al., 2002). Whereas the design calls for an
upper droplet size response of ~45 μm diameter for LWC
measurements, measurements have shown that its response
rolls off at about 30 μm diameter.

The strengths of the PVM-100A are its fast response time,
accuracy and precision over the indicated droplet size range,
and stability of the measurements. The probe's fast response
has permitted new looks at fine-scale behavior in clouds
including the finding of a “scale-break” in the LWC power
spectra of clouds (Davis et al., 1999; Gerber et al., 2000), and
at the entrainment effect in stratocumulus (Gerber et al.,
2005) and cumulus (Gerber et al., 2008).

3.3. Optical properties

3.3.1. The cloud extinction probe
The Cloud Extinction Probe (CEP) was designed by the

Cloud Physics and Severe Weather Research Section of
Environment Canada for measuring the extinction coefficient
in clouds and precipitation (Korolev et al., 2001). The CEP
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utilizes a transmission method based on the measurement of
the attenuation of light between the receiver and transmitter.
The advantages of the transmission technique are: (1)
calculations of the extinction coefficient from first principles
based on the Beer–Bouguer law, (2) a large sample volume,
which enables statistically significant measurements in
clouds with low concentrations, (3) minimal effect of ice
shattering on measurements due to large spatial separation
(up to 10 m or higher) of transmitter and receiver.

The CEP consists of an optical unit that combines a
transmitter and receiver as well as a retro-reflector. A
collimated light beam is generated by an optical system
consisting of a high intensity LED with the wavelength
λ=635 nm, diffuser, condenser, pinhole and objective. The
beam travels from the optical unit to a retro-reflector then
returns the same distance back to the optical unit. After
passing though the objective and beam-splitter its intensity is
monitored by a photodetector. The CEP was installed on the
National Research Council's Convair-580 with the optical unit
inside the wing tip canister and the retro-reflector inside a
hemispherical cap at the rear side of a PMS probe canister.
The distance between the optical unit and the retro-reflector
was L=2.35 m. Depending on aircraft the separation be-
tween the optical unit and the retro-reflectormay vary from 1
to 10 m. The CEP was designed to operate in all weather
conditions. Based on the flight tests the threshold sensitivity
of the probewas found to be approximately 0.2 km−1 and the
upper limit of the measured extinction coefficient is estimat-
ed to be no less than 200 km−1.

3.3.2. The polar nephelometer
The ‘Polar Nephelometer’ constructed at the Laboratoire

de Météorologie Physique (LaMP, Clermond-Ferrand, France)
is the only instrument that can make direct, in situ
measurements of the scattering phase function of cloud
particles over a broad range of sizes from a few micrometers
to about 1 mm diameter (Gayet et al., 1997, 1998; Crépel et
al., 1997).

The probe measures the scattering phase function be-
tween 3.5° and 169° of an ensemble of cloud particles
intersecting a collimated laser beam near the focal point of a
paraboloidal mirror. The laser beam is provided by a high-
power (1.0 W) multimode laser diode operating at
λ=804 nm. The light scattered at polar angles from 10 to
165° is reflected onto a circular array of 41 photodiodes. At
small angles (3.5°bθb10°, 165°bθb169°), where the angular
resolution is 1.58°, optical fibers are used to collect and
transmit the light to photodiodes. The resolution is 7° for
larger angles (10°bθb165°). The sensitive volume (0.2 cm3)
is defined by a 10-mm-long and 5-mm-diameter laser beam.
The data acquisition system provides a continuous sampling
volume by integrating the measured signals of each of the
detectors over a selected period.

From the measurements of the scattering phase function,
particle types, i.e. water droplets and ice crystals with
different habits, can be distinguished and the scattering
coefficient and asymmetry parameter derived. The Polar
Nephelometer measurements are generally validated by
comparing the microphysical parameters retrieved from the
scattering phase function (Dubovik, 2004) with those derived
from direct size distribution measurements by light scatter-

ing and imaging probes. The inversion method enables the
retrieval of volume particle size distributions and additional
microphysical and optical parameters such as liquid water
content, particle concentration, scattering coefficient and the
asymmetry parameter. Mie theory is used to describe light
scattering characteristics for water droplets and small, quasi-
spherical ice particles. For large ice crystals, the geometrical
optics approximation is used.

3.3.3. Cloud integrating nephelometer
The Cloud Integrating Nephelometer (CIN), first termed the

“g-meter”, was developed by Gerber Scientific Inc. to address
the need for direct, in-situ measurements of the asymmetry
parameter, g, and the optical extinction coefficient, Be, at visible
wavelengths in clouds (Gerber, 1998; Gerber et al., 2000).
While accurate measurements of g in water clouds could be
obtained through application of Mie theory to measured
distributions of spherical droplets, the same was not possible
for clouds composed of ensembles of ice crystals, with the
exception of the Polar Nephelometer that measures the phase
function from which g can be derived.

The CIN operates in much the same way as integrating
nephelometers that are used for aerosol measurements. A
collimated laser-diode beam irradiates cloud particles that
pass through the CIN aperture during aircraft flight. These
particles scatter light out of the direct path of the laser beam
to a set of four Lambertian sensors. The absolute and relative
magnitudes of the signals received by each of the sensors are
used to infer the light scattering properties of the cloud
particles. The CIN is designed to measure the asymmetry
parameter and extinction coefficient of cloud particle ensem-
bles whose diameters range from about 4 to 2500 μm
diameter at the wavelength of the instrument laser
(635 nm). The CIN measures the intensity of light reaching
each sensor (photomultiplier tubes) as a voltage that is then
multiplied by a set of scaling constants. The first set of scaling
constants determines the relative response of each of the four
sensors and the second converts the voltages to light
extinction values. Provided that the missing fraction, f, of
light scattered into the forward 10° is known, then the
asymmetry parameter can be directly calculated from
extinction values (Gerber et al., 2000):

Values of f are large but tightly constrained because forward
diffraction is very close to one half of the total scattered energy
in the geometric optics limit. For droplets, independent of
droplet size, f=0.53±0.01 (Garrett et al., 2001). For ice
crystals, f=0.57±0.02 for a wide range of plausible sizes and
shapes (Garrett, 2008). The related uncertainty in calculations
of g is ±0.01 and 5% in Be. Calculation of voltage to extinction
relationships in the CIN is achieved through comparison with
either the PSA channel of a PVM-100 probe (Gerber et al.,
2000), or more directly through comparison with ground-
based transmission measurements in fog (Gerber et al., 2004).
Additional tests may be done in post-analysis through in-
tercomparisons with other aircraft probes based on measure-
ments within liquid clouds where general instrument
performance tends to be well characterized (Garrett et al.,
2001; Garrett, 2007).

The CIN sampling cross-section is about 30 cm2, so the
sampling volume is 300 l per second at an aircraft speed of
100 m/s.
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3.4. Emerging technology

There are a number of relatively new technologies that
have been developed in recent years but have not yet
undergone the same rigorous scrutiny as those described
above. The preliminary results from the initial applications of
these new measurement techniques are encouraging and
deserve further evaluation. Some of these technologies are
available commercially, such as the PDI and CAS-DPOL, while
others like the HOLODEC have been developed at universities
and research institutes.

3.4.1. Phase Doppler interferometry
Instruments known as the Phase Doppler Interferometer

(PDI) are based on light scattering interferometry (Bachalo,
1980,1994; Bachalo and Houser, 1984; Albrecht et al., 2003),
an extension of the well known Laser Doppler Velocimeter
technique (Durst et al., 1981). The scattering by spheresmuch
larger than the instrument wavelength is approximated by
geometrical optics. The method is independent of the laser
beam and light scattering intensities except for the need to
produce adequate signal-to-noise ratio.

PDI instruments use a laser operating in single longitudi-
nal mode to produce a coherent, polarized beam that is split
into two equal intensity beams, typically with an acousto-
optic modulator known as a Bragg cell which also shifts the
frequency of one of the beams. Two equal-intensity parallel
beams are focused to an intersection region to form the
sample volume region. An interference fringe pattern is
formed with the fringe spacing determined by the laser
wavelength and beam intersection angle. Spherical particles
passing through the beam intersection scatter light which is
detected by the receiver. The receiver, located at a suitable off
axis angle, is comprised of a lens to collect the light and image
it to a small selectable aperture. The collected light is
partitioned into three segments and directed to three
photodetectors. The signals have a sinusoidal character that
are detected and processed using digital sampling and Fourier
transform. Each detector forms a nearly identical signal that is
phase shifted relative to those from the other detectors. The
frequency of each signal is proportional to the particle
velocity. Using geometrical optics theory, the phase shift
between each of the three possible signal pairs from the three
detectors is linearly proportional to the droplet diameter.
With three pairs of detectors, optical phase ambiguity (phase
shifts greater than 360°) is resolved and redundant measure-
ments of each droplet are obtained for additional signal
validation and averaging.

The PDI, measures drop velocity and size. The velocity
measurement is useful diagnostic that, when compared to the
aircraft velocity, confirms the accuracy of the drop sizing. The
PDI technique is capable of measuring drop diameters in the
size range of approximately 1–1000 μm. A single instrument
is limited to a size dynamic range of approximately 50:1 due
to photodetector performance. Minimum drop size is deter-
mined by the smallest necessary signal-to-noise ratio, and for
instruments designed for cloud drop measurements, it is
estimated to be between 1 and 3 μm. The maximum size is
limited by the assumption of drop sphericity. For realistic
operations, the upper cloud drop size range is limited
primarily by counting statistics and not instrument capabil-

ities. In stratocumulus, a reasonable upper-bound has been
found to be ~100 μm diameter (Chuang et al., 2008). The
sizing principal is insensitive to changes in droplet velocity
and current signal data processing technology permits
measurements to speeds in excess of 200 ms−1.

Since its inception in 1982, the method has been applied
widely to a large range of ground-based spray characteriza-
tion applications; however, it has not been used on aircraft
except for a limited number of applications and there are few
publications where measurements from the PDI have been
benchmarked against the more traditional “legacy” instru-
ments like the FSSP (Chuang et al., 2008; Small and Chuang,
2008).

3.4.2. Holography
Holography provides the three-dimensional position,

shape, and size of each particle in a dilute collection of
cloud droplets/ice particles inside a localized, three-dimen-
sional sample volume. In-line holography is particularly
useful for atmospheric applications because of its relatively
simple and robust setup. In-line holography has been applied
to various problems of atmospheric interest since 1975 using
photographic film/plates (Trolinger, 1975; Kozikowska et al.,
1984; Uhlig et al., 1998; Borrmann and Jaenicke, 1993;
Brown, 1989) or digital cameras (Lawson and Cormack, 1995;
Raupach et al., 2006; Fugal et al., 2004; Fugal and Shaw,
2009).

Holography has several advantages relative to other cloud
microphysical measurement techniques: it can provide a well
defined sample volume, independent of particle size (given
an appropriate reconstructionmethod (Fugal et al., 2009) and
air speed, it is able to measure over a wide range of particle
sizes, it provides relative spatial locations of particles in its
sample volume, thereby allowing for studies of particle
clustering or ice crystal shattering (Fugal and Shaw, 2009)
and it allows relatively large, contiguous volumes of cloud to
be sampled instantaneously, without requiring assumptions
regarding statistical homogeneity, etc. The primary, relative
disadvantages of digital holography are the large data file
sizes and the added complexity involved in data processing,
which includes digital reconstruction and particle detection
and characterization.

An in-line hologram is an interference pattern, a “virtual
image”, resulting from the superposition of an incident plane
wave and light scattered by the dilute suspension of
illuminated particles. The virtual image reconstructs as a
blurry background appearing around the reconstructed
“focused” real image. The effect of the virtual image on the
quality of the real image can be reduced (Raupach, 2009) and
thismethod can also be used to probe the internal structure of
ice particles in holograms. The “focus” position for the
reconstructed real image of a given particle yields the
three-dimensional position of the particle, and the image at
this position gives the shape and size of that particle.

Under typical aircraft flight conditions the sampling rate
of an in-line hologram instrument is not dependent on air
speed, but on the individual sample volume size and the
frame rate of the camera. The minimum particle detection
size is, in general, determined by the greater of two criteria:
Either greater than two pixels wide to resolve a particle or the
diffraction limited resolution (Fugal et al., 2009). The
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maximum detection size is some fraction of the detector size
and typically determined by the automated hologram
processing code's ability to reliably bring such a large particle
in focus (Fugal et al., 2009). Particle sizes can be calculated by
counting the number of pixels contained in each focused
particle and calculating an equivalent diameter for a circle of
equal area. For spherical particles this pixel counting method
gives a precision approximately equal to the square root of
the pixel size (Lu et al., 2008). Fugal et al. (2004) and Pu et al.
(2005) discuss the accuracy of sizing particles using digital in-
line holography.

3.4.3. Distinguishing Ice crystals from water droplets
The CAS-DPOL, a modification to the CAS (Baumgardner et

al., 2001), is able to differentiate water droplets from ice
crystals in mixed phase clouds. The optical system is identical
to the CAS with the addition of another back detector,
collecting over the same angle but with a polarized filter 90°
to the polarization of the incident light. Hence it will only
measure scattered light out of the incident polarization plane.
Spherical water droplets will not rotate the polarization but
frozen water droplets and aspherical ice crystals will. As with
the APSD (described in Section 2.4.2), the signals from the
three detectors can uniquely identify a spherical from a non-
spherical cloud particle and even very small asphericities,
such as a newly frozen water droplet, will produce significant
depolarization signals.

Tthe CAS-DPOL has been evaluated in the Aerosol
Interaction and Dynamics in the Atmosphere (AIDA, http://
www.imk-aaf.kit.edu/73.php) cloud chamber under condi-
tions when water droplets were freezing and changing from
spheres to other shapes. The transition from water to ice was
clearly detected and the larger droplets were observed first to
freeze and while the smaller droplets froze at a slower rate.
This has been observed previously in laboratory studies of
droplet freezing (Gonda and Takahashi, 1984).

4. Radiation measurement techniques

Solar radiation is the Earth's most significant energy
source, the principal driver of circulation dynamics, chem-
istry and interactions among the atmosphere, oceans, ice,
and land that maintain the terrestrial environment and
biosphere. Solar radiation is scattered and absorbed within
the atmosphere and at the Earth's surface; hence, measure-
ments of solar and infrared radiation over a wide range of
frequencies are essential for understanding changes in
climate related to processes that impact the radiative
balance of the earth. In recent years there have been
advances in spectral radiometry, actinic flux density mea-
surements and stabilization of aircraft radiometers that will
be highlighted in the following sections.

4.1. Solar spectral radiometry

Airborne spectral radiometers have been utilized more
frequently over the past decade after a historical reliance on
broadband radiometers for examining problems such as
cloud absorption, aerosol forcing, and the fundamental
measurement of surface and atmospheric albedo. Perhaps
the best example of the success of spectrally resolved

irradiance was in the resolution of anomalous cloud absorp-
tion. The initial report by Cess et al. (1995) on a bias between
modeled and measured broadband cloud absorption was one
of the motivating factors for the development of the Solar
Spectral Flux Radiometer (Pilewskie et al., 2003) and,
independently, the actively stabilized Albedometer (Wen-
disch et al., 2001). Although discrepancies still remain
between spectral measurements and models, the new
spectral measurements determined unequivocally that spec-
tral absorption features in clouds could be explained by water
and that no “unexplained absorber”was required to reconcile
observations and theory within experimental and computa-
tional uncertainties (Pilewskie et al., 2005).

The basic elements of the spectral radiometer are a fore-
optic, light collector or optical inlet, that collects the light via a
diffusive elementwhich transmits optical power proportional
to the cosine of the angle that the incident light makes with
respect to the aperture normal. Light from the diffuser may be
transmitted directly onto the entrance slit of a spectrometer
where it is dispersed into its component wavelengths;
however, for ease of aircraft integration and field calibration,
some of the instruments implement optical fibers to transmit
light from the aircraft skin-mounted light collector to the rack
mounted spectrometers located within the aircraft cabin. The
light collectors, or optical inlets, are small lightweight devices
which greatly simplify aircraft integration, improve the
adaptability to a broad collection of platforms and make
field calibration easier and more accessible. An additional
benefit of fiber optics is that they highly depolarize incident
light thus reducing the impact of polarizing optical elements
on radiometric accuracy.

4.2. Actinic flux density measurement

Airborne measurements of spectral, actinic flux density
determine frequencies of atmospheric photolysis processes.
There are two radiometric approaches to derive frequencies of
photodissociation processes: filter radiometry and spectro-
radiometry (Hofzumahaus, 2006). Filter radiometry is a
technique where the spectrally integrated solar actinic flux
density ismeasured in a confined spectral interval. The receiver
optics consists of a series of frosted quartz domes that act as
diffuserswith nearly isotropic responsewithin one hemisphere
(Volz-Thomas et al., 1996). The photons are directed to a
detector after filtering for frequencies that emulate the spectral
sensitivity of themolecule-specific products of absorption cross
sections and quantum yields. A filter radiometer therefore
covers only one photolysis process and needs calibrationwith a
reference instrument. Due to their fast time response (about
1 s) and compact design, filter radiometers are technically well
suited for airborne operations.

Spectroradiometry is based on measurements of spectral
actinic flux density in the UV–VIS spectral range. This is the
most versatile method to determine photolysis frequencies
because J can be derived for any molecule if the photolysis
process is covered by the instrumental wavelength range and
the molecular parameters are known. As in the case of filter
radiometers, optical receivers typically consist of frosted quartz
domes to obtain an isotropic angular response within a
hemisphere. The collected photons are transmitted to a
monochromator where the radiation is detected as a function
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of wavelength. Scanning systems mostly use photomultiplier
tubes as detectors while multichannel spectrometers utilize a
photodiode array or a Charge Coupled Device. Scanning
spectrometers typically run through a spectrum within 10–
90 s (Shetter and Müller, 1999; Hofzumahaus et al., 2002;
Shetter et al., 2003). The time-consuming scanning procedure
can lead to a distortion of the spectrum under conditions of
inhomogeneous clouds or surface albedo. Furthermore, motor-
ized parts within the instrument can influence stability on
moving platforms. Except for minor corrections, all spectro-
radiometers can be calibrated absolutely with spectral irradi-
ance standards that are be traced to national standards.

4.3. Stabilized radiometer platforms

Aircraft measurements of solar broadband or spectral
irradiance are typically done by simply mounting an identical
set of broadband or spectral solar radiometers directly to the
top and bottom of a research aircraft to simultaneously
measure the down and up-welling solar irradiance at a given
altitude; however, radiometers rigidly attached to an aircraft
will tilt along with the aircraft during flight. These variations
from a horizontally level position will introduce offsets and
fluctuations into the measured signal that are not due to any
change in the magnitude or angular distribution of the solar
radiation in the sky. This effect is most pronounced in solar
irradiance measurements because sunlight is typically dom-
inated by a non-isotropic direct component, i.e. the light
coming directly from the sun, with a secondary contribution
from the diffuse sunlight scattered from the sky. The direct
component of the solar radiation scales with the cosine of the
solar zenith angle; however, on an aircraft, the cosine of the
solar zenith angle with respect to the radiometer is not only a
function of the position of the sun but also of the pitch, roll,
and heading of the aircraft. Such changes in solar zenith angle
with respect to the radiometer will change the measured
irradiance, even though the sun's position in the sky, and the
direct component of the intensity, has not changed. It is
typical to see significant changes in the measured solar
irradiance generated by nothing more than heading changes
in the aircraft.

In recent years, a number of stabilized platforms have
been developed for aircraft that correct for this problem in
solar irradiance measurements by keeping the radiometers
horizontally level in flight (Wendisch et al., 2001; Bucholtz et
al., 2008). They operate by measuring both the changes in the
attitude of the platform with respect to Earth centered
coordinates and with respect to the aircraft. Corrections are
thenmade for those changes through a series of actuators and
motors. The attitude of the platform is obtained from a real
time Inertial Navigation System (INS) which consists of a
highly accurate Inertial Measurement Unit (IMU) for rate and
acceleration data, a Global Positioning System (GPS) for
positional information, and software for real-time analysis.
The IMU uses fiber optic gyros (FOGs) to measure the angular
rate of pitch, yaw and roll and silicon accelerometers to
measure linear acceleration. Since IMUs inherently tend to
drift over time, the GPS is used to compensate for this effect.

The first active, horizontally stabilized system specifically
developed for aircraft radiometer measurements is described
by Wendisch et al. (2001) and Jäkel et al. (2005). This system

keeps an airborne spectral albedometer and actinic flux
radiometer level to better than ±0.2° for pitch and roll angles
within the range of ±6°. A next generation version of this
platform, named the Stabilized Platform for Airborne Solar
Radiation Measurements (SPARM) is currently under devel-
opment for the National Center for Atmospheric Research
(NCAR) HIAPER research aircraft.

Bucholtz et al. (2008) describe the Stabilized Radiometer
Platform (STRAP), another actively stabilized, horizontally
level platform for aircraft radiometer measurements. STRAP
can hold up to three radiometers level to better than ±0.02°
for aircraft pitch and roll angles of up to approximately ±10°.
It corrects for angular offsets at a rate of 100 Hz and can
compensate for most pitch and roll changes experienced in
normal flight and in turbulence. The STRAP design differs
from the stabilized system described by Wendisch et al.
(2001) primarily through the attachment of the STEAP IMU
directly to the bottom of the payload plate that holds the
radiometers. In the Wendisch et al. (2001) design, the IMU is
fixed to the aircraft.

Stabilized platforms minimize errors introduced into the
solar irradiance measurements due to a tilted instrument and
greatly simplify post processing of the data because tech-
niques to correct the measured irradiance back to a level
platform are no longer needed. In addition, because stabilized
platforms keep the solar radiometers level for pitch and roll
angles of anywhere from ~±6° to ~±10°, the quality of useful
data from any given flight is significantly increased and the
restrictions on flight patterns are greatly reduced.

4.4. Future outlook for radiometery

Airborne microwave remote sensing for satellite valida-
tion studies (e.g. (Blackwell et al., 2001; Crewell et al., 1994;
Lobl et al., 2007) has played an important role in the past and
will certainly continue to do so. In addition, airborne
simulators can provide an opportunity to test new instru-
ment techniques before they are brought to space. An
example of this is the application of submillimeter observa-
tions to derive global ice water path distributions (Buehler et
al., 2007) for which the manufacturing of a simulator is
currently underway. A particular advantage of airborne
observations is their ability to bridge the scale between
point wise, in-situ and large-scale satellite observations.
Because of the relatively low spatial resolution of microwave
satellites, beam filling problems are particularly evident for
highly variable parameters like clouds and precipitation.
Airborne observations can help to address scale related
issues in both satellite retrieval algorithms and in larger
scale atmospheric modeling. In this respect sensor synergy
with auxiliary instrumentation like cloud radar, lidar and/or
solar and infrared radiation observations is highly valuable
as atmospheric parameters can be derived with much
improved accuracy. A classical example is the determination
of liquid water profiles over ocean. Here the drop size
dependent radar signal can be adjusted by the integral
amount that is provided by microwave radiometers with
high accuracy. Sensor synergy allows the most complete
view on the atmospheric state and therefore provides
valuable input for process studies. The recent development
of research aircraft with relatively large payloads and long
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distance coverage, e.g. HIAPER in the U.S. and HALO in
Germany, will certainly push this development.

5. Measurement challenges

All of the measurement techniques previously described
are susceptible to uncertainties and limitations that are
inherent to the technology that has been implemented in
the sensors. Within the references that are related to each of
the instruments the reader will find detailed analyses of the
uncertainties and limitations associated with the measure-
ment technique and we urge those who wish to use these
instruments or to analyze the data taken with them to read
these articles carefully. Failure to understand the limitations
or potential errors associated with the instrument of interest
jeopardizes the quality of the analysis and the fidelity of
conclusions that may be drawn from such evaluations.

There are many challenges that face the science commu-
nity with respect to the measurement of aerosols and clouds
from airborne platforms. Some of the more daunting ones are
those summarized in the following sections.

5.1. Anisokinetic sampling

By definition isokinetic sampling is when the air at the
sample point, and the embedded particles, are at free stream
velocity. The particle velocity with respect to the aircraft is
determined by their fall speed, the local wind vector and the
aircraft velocity. Anisokinetic sampling is when the air is
accelerated or decelerated with respect to the free stream. In
either case the effect is to change the thermodynamics of the
air and alter particle trajectories leading to potential errors in
the measured particle properties.

Anisokinetic sampling is caused by the presence of a solid
body of sufficient size to alter the air mass velocity. In aircraft
applications the aircraft body or the instrument sampling
inlets will potentially contribute to this problem. For the case
of air flowing past a fuselage, in some regions streamlines will
converge, leading to compression and acceleration, particle
trajectory convergence and enhanced concentrations. In
other regions where the flow separates and diverges, there
can be no particles, i.e. shadow zones.

Shadow and enhancement zones are the most prominent
aerosol measurement bias caused by an aircraft body; however,
there are other issues to be considered. Due to the aircraft body,
the sampling air is decelerated, which, according to the laws of
thermodynamics leads to an increase in air temperature (ram
heating). Dependingon the aircraft airspeed and themagnitude
of deceleration, this increase can be as much as 30 K. Particles
passing these zones of increased temperature may partially
evaporate and thus change sizeaswell as chemical composition.
In zones of airflow acceleration, the temperature is decreased,
which can lead to condensation of vapor molecules and even
formation of ice crystals in supercooled clouds (Heymsfield,
2010). Measurements well outside the aircraft boundary layer
are important, not only to exclude particle losses in this
turbulent flow region, but also to prevent memory effects
caused by resuspension of particles previously deposited on the
fuselage. On the NASA DC-8 research aircraft, Vay et al. (2003)
showed that air from a cabin air vent stayed within the aircraft
boundary layer for at least 20 m downstream. The investiga-

tions by Vay et al. (2003) also underscore the importance of
knowing the streamlines along the aircraft in order to prevent
artifacts caused by air vents upstream of sampling ports.

An airborne aerosol sampling system consists of an inlet,
located outside the aircraft, and the sampling line that trans-
ports the particles from the inlet to the measurement device
inside. The overall sampling efficiency of an inlet is the product
of the inlet efficiency and the transport efficiency through the
sampling line. The inlet efficiency is derived as the product of
the fraction of particles entering the inlet (aspiration efficiency)
and the fraction of these particles being transmitted through
the inlet (transmission efficiency). Individual efficiency values
range from 0.0 to 1.0 (or sometimes larger). For many
processes, the above efficiencies can be determined from the
available empirical equations (Hinds, 1999; Baron andWilleke,
2005; Vincent, 2007). However, empirical equations for
efficiencies are not easily established for some inlet configura-
tions, and for such cases the efficiencies must be determined
differently (e.g., by wind tunnel studies).

Themajor goal of airborne aerosolmeasurements is to carry
out representative sampling; i.e. the investigator wants to
know the physical and chemical state of the aerosol particles in
the undisturbed atmosphere. Hence it is important to quantify
these processes. In principle, there are four ways to accomplish
this task: theuseof empirical equations fromthe literature (e.g.,
given in Baron and Willeke, 2005 or Von der Weiden et al.,
2009), Computation Fluid Dynamic (CFD) modeling studies
(e.g., Ramet al., 1995; Cain et al., 1998; Twohy, 1998;Dhaniyala
et al., 2003; Krämer and Afchine, 2004; Eddy et al., 2006),
experimental quantification of particle losses by wind tunnel
studies (e.g., Chandra and McFarland, 1997; Cain et al., 1998;
Murphy and Schein, 1998; Twohy, 1998; Hegg et al., 2005;
Hermannet al., 2001; Irshad et al., 2004) or in-flight testing and
comparison (Huebert et al., 1990; Porter et al., 1992; Weber et
al., 1999; Blomquist et al., 2001; Huebert et al., 2004; Moore et
al., 2004; Hegg et al., 2005).

5.2. Cloud particle breakup

Sampling artifacts by definition are any distortion in the
sampled size-differentiated concentrations relative to that in
the atmosphere. In airborne research the high airspeed of the
measurement platform is primarily responsible for potential
artifacts. The most prominent of these might occur when the
aircraft flies into clouds where protruding structures of an
instrument have surfaces where cloud droplets or ice crystals
might impact and break-up (e.g., Cohen, 1991; Yarin, 2006;
Vidaurre and Hallett, 2007). Weber et al. (1998) compared
measurements made downstream of two inlet systems on the
NCAR C-130: one with a relatively large inlet surface area
compared to the inlet sampling cross-sectional area (large
area ratio) and one with a relatively small inlet surface area
compared to the inlet sampling cross-sectional area (small
area ratio). The authors found that water droplets impacting
the lips (leading edge) of the large area ratio inlet led to the
generation of many small particles downstream. Sampled
particle concentrations were increased by at least an order of
magnitude compared to the measurements downstream of
the small area ratio inlet.

The shattering of ice particles into small fragments, prior to
entering the probe's sample volume, can cause detection of
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multiple artificial c small ice particles and result in an
overestimation of the concentration (Emery et al., 2004;
Isaac et al., 2006). The effect of shattering on ice particle
measurements has recognized since 1985 (e.g. Gardiner and
Hallett, 1985; Gayet et al., 1996; Field et al., 2003, 2006;
Korolev and Isaac, 2005; McFarquhar et al., 2007; Heyms-
field, 2007; Vidaurre and Hallett, 2009; Jensen et al., 2009;
Korolev et al., 2010). Ice particles shatter and break for
two reasons. The first is related to the mechanical impact of
the ice crystals with the probes' housing that happens
upstream of the sample volume as ice crystals break into
small fragments that get entrained in air passing through
the sample volume. The second is due to particle fragmen-
tation related to stresses experienced by an ice particle
caused by the velocity shear and vorticity generated by the
probe housing. The first type of shattering may affect nearly
all type of ice particles, whereas the second type of shattering
mainly affects aggregates with weak bonding between ice
particles (e.g. aggregates of dendrites or needles) or some
types of naturally fragile ice particles (e.g. bullet rosettes,
dendrites).

The fragments from mechanical shattering have much
smaller sizes and the number of the pieces in the view field of
OAPs may exceed a few hundred. The analysis of 2D imagery
registered by the imaging probes suggests that the frequency
of occurrence of the first type of shattering is significantly
more common than of the second. The analysis of high
speed videos recorded in wind tunnels indicate that after
shattering the ice particle fragments may travel several
centimeters across the wind direction before they align
with the airflow. The shattered fragments have different
sizes, velocities and trajectories at the initial moment after
the impact.

Based on the analysis of data collected during the wind
tunnel experiments and in-situ measurements, our current
knowledge about shattering of ice particles can be summa-
rized as follows:

1. Ice particles bouncing from the surface of cloud probes
may travel up to 5–6 cm across the airflow at 100 m/s and
1000 mb pressure before passing through the sample area.
For the same conditions ice particles may bounce forward
against the airflow up to 1 cm.

2. After impact with a solid surface, ice particles may shatter
into small fragments. At aircraft speeds, the size of particle
fragments has been observed to be as small as 5 μm.

3. The number of fragments per shattered particle may reach
the order of 103, depending on the particle size and habit.
The number of fragments that intersect the sample volume
of the particle imaging probes may reach a few hundred
per shattered particle.

4. Shattered particles often form a cluster of closely spaced
fragments with characteristic dimensions several centi-
meters along the airflow direction in the vicinity of the
probe's sample volume.

5. The concentration of large particles is not noticeably
affected by shattering.

6. Some correction for the effects of particle shattering, based
on particle inter-arrival times (Cooper, 1977; Field et al.,
2006) and the filtering out of fragmented images (Korolev
and Isaac, 2005) are possible.

7. One way to mitigate shattering is to minimize the
offending surface area. The modified tips should deflect
bouncing particles and shedding water away from the
sample volume and optical field apertures. Work has been
done to develop such tips (Korolev et al., 2010). Compar-
isons of simultaneous measurements by OAPs with and
without modified tips have shown that the modification
can effectivelymitigate the shattering effect (Korolev et al.,
2010).

6. Summary

The preceding discussion of measurement capabilities for
aerosol, cloud and radiation was designed to broadly orient
the reader to the instrumentation that is currently available
for airborne applications and to introduce some emerging
technologies that show promise, especially with respect to
addressing a number of measurement challenges that are
barriers to advancing our understanding of aerosols and
clouds and their impact on radiation and climate.

It is essential that atmospheric scientists, students,
instrument developers, vendors and aircraft operators un-
derstand the pros and cons of the instruments with which
they are involved, whose data they evaluate and whose
limitations they may wish to resolve. Significant progress has
been made since airborne research was begun but there are
significant gaps in our understanding of atmospheric pro-
cesses that require better measurements that can only be
made from aircraft with better instrumentation.

The book “Airborne Measurements—Methods and Instru-
ments”, to be published in mid-2012 by Wiley, from which
this presentation was extracted, will cover in much greater
detail, not only measurements of aerosol, cloud and radiation
measurement, but also measurements of basic thermody-
namic and dynamic parameters and gas phase constituents.
In addition there is a much more comprehensive chapter on
particle sampling issues and chapters on hyperspectral and
active remote sensing.

Disclaimer

The mentioning of a particular commercial vendor or
product in this paper does not constitute endorsement of the
either the vendor or the product.
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Acronyms

AIDA: Aerosol Interaction and Dynamics in the Atmosphere
AMS: Aerosol Mass Spectrometer
AMSU: Advanced Microwave Sounding Unit
BC: Black Carbon
CAS: Cloud and Aerosol Spectrometer
CAS-DPOL: CAS with Depolarization
CCN: Cloud Condensation Nuclei
CDP: Cloud Droplet Probe
CEP: Cloud Extinction Probe
CFD: Computational Fluid Dynamics
CIN: Cloud Integrating Nephelometer
CIP: Cloud Imaging Probe
CIP-GS: CIP with Grayscale
CN: Condensation Nuclei
CPC: Condensation Particle Counter
CPI: Cloud Particle Imager
CPSD: Cloud Particle Spectrometer with Depolarization
CSI: Cloud Spectrometer and Impactor
CVI: Counterflow Virtual Impactor
FISH: Fast In Situ Stratospheric Hygrometer
FOGS: Fiber Optic Gyros
FSSP: Forward Scattering Spectrometer Probe
GPS: Global Positioning System
HOLODEC: Holographic Detector for Clouds
HVPS: High Volume Particle Spectrometer
INS: Inertial Navigation System
IWC: Ice Water Content
LaMP: Laboratoire de Météorologie Physique
LWC: Liquid Water Content
MAAP: Multi-angle Absorption Photometer
MTP: Microwave Temperature Profiler
MVD: Median Volume Diameter
OAP: Optical Array Probe
OPC: Optical Particle Counter
PAS: Photoacoustic Spectrometer
PALMS: Particle Analysis by Laser Mass Spectrometer
PCASP: Passive Cavity Aerosol Spectrometer Probe
PDI: Phase Doppler Interferometer
PILS: Particle in Liquid Sampler
PIP: Precipitation Imaging Probe
PSA: Particle Surface Area
PSD: Particle Size Distribution
PVM: Particle Volume Monitor
rBC: Refractory Black Carbon
SID: Small Ice Detector
SPARM: Stabilized Platform for Airborne Solar Radiation Measurements
SP2: Single Particle Soot Spectrometer
S: Supersaturation
STRAP: Stabilized Radiometer Platform.
TDL: Tunable Diode Laser.
TOF: Time of Flight.
TWC: Total Water Content.
UHSAS: Ultrahigh Sensitivity Aerosol Spectrometer.
VIPS: Video Ice Particle Spectrometer.
2D-C: Two Dimensional cloud OAP.
2D-P: Two Dimensional precipitation OAP.
2D-S: Two dimensional stereo OAP.
260-X: One dimensional OAP.
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